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ABSTRACT
Bluetooth Low Energy (BLE) serves as a critical protocol for low-
energy communication, playing a vital role in various sectors in-
cluding industry, healthcare, and home automation. Despite its
widespread adoption, inherent security limitations and firmware
vulnerabilities expose BLE to significant risks, notably from spoof-
ing attacks that threaten device integrity and data privacy. Ad-
dressing this challenge, this paper introduces BLEGuard, a hybrid
detection mechanism specifically designed to identify spoofing at-
tacks within BLE networks. BLEGuard integrates pre-detection
scheme, reconstruction techniques, and classification models to
effectively detect advanced spoofing threats. To refine and vali-
date BLEGuard system, this paper established a physical Bluetooth
testbed to simulate attacks and generated a large-scale BLE Spoofing
Attack Dataset (BLE-SAD) with over 1.3 million network packets.
The experimental results demonstrate a high detection accuracy
rate of 99.02%, with a false alarm rate of 2.04% and an un-detection
rate of 0.37%. These findings highlight BLEGuard’s effectiveness in
enhancing the security of BLE networks, proving its potential as a
robust solution to safeguard against sophisticated cyber threats in
real-world applications.
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1 INTRODUCTION
Named after the Viking King Harald Bluetooth, who was known
for his role in unifying Danish tribes, Bluetooth technology has
become a ubiquitous standard for short-range wireless communi-
cations. Since its inception, Bluetooth has revolutionized the way
devices interact in close proximity [7]. The advent of the Bluetooth
Low Energy (BLE) standard has further solidified its dominance,
especially in the burgeoning era of the Internet of Things (IoT)
and the emerging technologies of 6G communications [14]. BLE’s
low power requirements and high functionality make it an ideal
choice for a multitude of IoT applications ranging from industrial
automation to health monitoring, ensuring seamless connectivity
between billions of devices. By 2027, the deployment of BLE devices
is anticipated to burgeon to an astonishing 7.5 billion [2].

This exponential adoption, however, is overshadowed by signif-
icant security challenges within the BLE networks. BLE-enabled
devices are prone to a diverse array of sophisticated attacks due to
inherent I/O limitations and firmware vulnerabilities. These threats
include zero-day exploits, where attackers exploit undisclosed vul-
nerabilities [16], DDoS (Distributed Denial of Service) attacks that
cripple network services [6], and particularly spoofing attacks [18].

Spoofing attacks are alarmingly prevalent and concerning due
to their low initiation costs and minimal hardware requirements,
making them a preferred tactic among attackers. In these attacks,
perpetrators impersonate legitimate devices, misleading network
participants to intercept or manipulate sensitive data [22]. This
undermines the integrity and confidentiality of BLE systems, facili-
tating unauthorized access and data breaches. The ease and low cost
of initiating these attacks underscore the urgent need for the de-
velopment of advanced detection mechanisms. These mechanisms
must be capable of identifying and mitigating the sophisticated
tactics used in spoofing attacks, thereby enhancing the security
posture of BLE networks against these pervasive threats [19].

To combat these security threats, an out-of-the-box monitor-
ing system has been introduced, leveraging BLE’s cyber-physical
features to fortify defenses against spoofing attackers [17]. Ad-
ditionally, various research initiatives employ machine learning
techniques to detect anomalous patterns within BLE network traffic.
A particularly promising learning framework that integrates recon-
struction and classification models has been developed to identify
network packets as either benign or malicious with remarkable
precision [10].

Unfortunately, most existing methods grapple with the signif-
icant challenge of harmonizing detection accuracy, false positive
rates, and resource utilization. This delicate balance severely re-
stricts their applicability across a broader spectrum of real-world
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Packet Number: 8942
Timestamp: 2023-04-18 17:45:30.654321
Channel: 39 (Used Channel Number)
Source MAC: 1a:2b:3c:4d:5e:6f (Device MAC Address)
Destination MAC: 6f:5e:4d:3c:2b:1a (Central Device MAC Address)
Advertising Interval: 400ms (Time between consecutive advertising packets)
RSSI: -54 dBm (Received signal strength indicator)
Carrier Frequency Offset: +2 KHz (Difference from the carrier frequency)
PDU Length: 31 bytes (Length of the protocol data unit)
Payload Data:
Opcode: 0x1c (ATT Read Request)
Handle: 0x0040 (Characteristic handle for Battery Level)
Value: 85% (Battery Level measurement value)
CRC: 0xDEADBEEF (Cyclic Redundancy Check for error-checking)
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Figure 1: Sample data of a typical BLE network packet.

scenarios [18, 23]. There is a pressing need for a more adaptable and
efficient solution, which can uphold stringent detection standards
while effectively managing resource constraints. Such an innova-
tion would significantly broaden the utility of security frameworks,
extending their deployment across a wider variety of environments
and devices. This expansion is crucial for bolstering defenses against
spoofing attacks in increasingly diverse and resource-constrained
settings [20].

Therefore, this work aims to introduce a novel detection mech-
anism that leverages cyber-physical analysis and deep learning
techniques. Specifically engineered to detect sophisticated spoof-
ing attacks, this mechanism combines extensive offline training
with critical real-time online analysis. In pursuit of this goal, we
established a tangible BLE network system for conducting attack
simulations and compiling a large-scale network dataset. This broad
and verifiable dataset is crucial for advancing research within the
domain and ensuring the robustness of our findings. A series of
experiments utilizing diverse datasets will be conducted to test the
viability of the detection mechanism proposed. Subsequent to these
tests, a meticulous assessment of the experimental results will be
performed, and their profound implications for real-world applica-
tions will be analyzed. Overall, our contributions are threefold:

• Development of the BLE-SAD dataset, which includes around
906,000 packets, tailored specifically for the training and evalua-
tion of our models.

• Design and empirical validation ofBLEGuard, which is proposed
for effective detection of spoofing attacks.

• Integration capabilities of BLEGuard within BLE networks, de-
signed to ensure effective detection without disrupting existing
network operations or depleting network resources.

2 PRELIMINARIES
2.1 Basics of Bluetooth Low Energy
Bluetooth Low Energy (BLE) is often the technology of choice for
networks where energy-efficient and cost-effective communication
is paramount. This is especially common with low-cost, energy-
constrained devices like temperature sensors that capture specific
data attributes and wirelessly transmit this information to user
devices, like smartphones. BLE operates using three dedicated radio
frequency channels (37, 38, and 39) for advertising, which is the
process of broadcasting the presence of a BLE device to initiate a
connection [7]. These are known as the advertising channels. Once

a connection is established, the remaining channels, known as data
channels, are used for ongoing communication between devices.

The typical communication protocol in a BLE network encom-
passes four main stages: advertising, connecting, pairing, and data
accessing [17]. The advertising stage is where the BLE device an-
nounces its availability to connect. In the connecting phase, a user
device responds to this advertisement, establishing a bidirectional
link. Pairing is the next crucial step, where security credentials
are exchanged, forming the foundation for a secure communica-
tion. Finally, in the data accessing stage, the authenticated user
device is able to read or write the data from or to the BLE device.
Figure 1 shows a typical network packet during the BLE communi-
cation, which includes data with time-series features such as packet
number, timestamp, advertising interval and payload data.

2.2 Spoofing Attacks in BLE Networks
The spoofing attack is a type of cybersecurity attack wherein an
attacker impersonates a legitimate BLE device or network entity
[22]. In such attacks, the perpetrator typically masquerades as a
trusted BLE device using forged information, such as a spoofed
MAC address or other identifying details, as illustrated in Figure 2
(a). In the context of a spoofing attack, the cyber-physical features
of the BLE network are notably impacted, leading to significant de-
viations from typical benign scenarios. For instance, an anomalous
shift in the RSSI (Received Signal Strength Indicator) values of the
advertising packets can signal the presence of a spoofing attack,
as depicted in Figure 2 (b). These deviations provide critical indi-
cators that can be used to effectively identify potential malicious
activity [4].

Given the unique characteristics of BLE networks, this paper has
identified and utilized four key cyber-physical features to enhance
the detection algorithm and to facilitate the training of learning
models:
• Used Channel Numbers (UCN): These denote the specific data
channels employed during the transmission of BLE packets, cru-
cial for analyzing communication patterns.

• Advertising Interval (INT): This measures the temporal interval
between consecutive packets transmitted on the same advertising
channel, vital for detecting timing anomalies.

• Received Signal Strength Indicator (RSSI): This feature repre-
sents the signal-to-noise ratio gleaned from packet exchanges,
providing insights into the physical layer connectivity.

• Carrier Frequency Offset (CFO): Refers to the discrepancy be-
tween the expected and the actual carrier frequencies used in
BLE communications, indicating potential frequency drifts or
unauthorized channel usage.

2.3 Current Security Challenges
The BLE specifications [1] provide a range of authentication mecha-
nisms theoretically designed to prevent spoofing attacks. However,
these mechanisms often fail to achieve their intended purpose in
practice due to three main reasons:
(1) Limited Device I/O Capabilities: A significant number of BLE

devices have limited I/O capabilities, which precludes them from
utilizing any robust authentication mechanisms. It is not surpris-
ing that recent research has shown that over 80% of current BLE
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Figure 2: (a) Spoofing attack in BLE sensor network and (b)
observed RSSI values during attack simulation.

devices communicate with user devices in plaintext without any
form of authentication [3].

(2) Persistent Security Vulnerabilities: For BLE devices that do
implement various security measures, there are still numerous
attack vectors at both the protocol level and application level that
malicious actors can exploit to conduct spoofing attacks [17].

(3) Insufficient User Awareness: Users of BLE devices may lack
awareness or the technical knowledge required to enable and
configure security features properly, leading to increased suscep-
tibility to spoofing attacks [5].

Additionally, the challenge of implementing software-based solu-
tions (i.e., firmware updates for BLE devices or software patches
on user devices) to these security vulnerabilities is compounded by
four major practical challenges:

(1) Ineffectiveness Against Zero-Day Exploits: The nature of
software patches does not allow them to preemptively protect
against zero-day vulnerabilities, which can be immediately ex-
ploited by attackers upon discovery [16].

(2) Fragmented Update Ecosystem: The diversity in BLE device
manufacturers leads to a fragmented ecosystem for firmware
updates, which complicates the process of applying uniform
security patches across devices.

(3) Legacy Device Constraints: A considerable number of legacy
BLE devices in use are incapable of being updated due to outdated
I/O capabilities, leaving them vulnerable to new exploits.

(4) Resource Constraints for Update Dissemination:Manyman-
ufacturers of BLE devices may face resource constraints that
impede the timely development and distribution of necessary
firmware updates, further exacerbating security challenges.

3 DATASETS BUILDING
3.1 Testbed Implementation
The testbed environment can be categorized into four parts: (i) BLE
devices, (ii) user devices, (iii) attacker platforms, and (iv) network
sniffers. Table 1 comprehensively illustrates all the components uti-
lized in the network testbed. The testbed was strategically deployed
within a physical environment: a 15𝑚×15𝑚 office space configured
with 18 cubicles, as illustrated in Figure 3. The office was methodi-
cally partitioned into 1𝑚 × 1𝑚 grids. This setting typifies a complex
and acoustically active indoor environment, presenting significant
challenges for evaluating the detection efficiency.

Figure 3: Locations of devices in proposed BLE testbed.

Table 1: Components of proposed BLE network testbed.

Component Description

BLE devices To build the BLE network testbed.
User devices To simulate normal usage scenarios.

Attacker platforms To launch spoofing attacks.
Network sniffers To capture network packets.

3.2 BLE-SAD Dataset
Regarding the building of our dataset, we collected normal adver-
tising packets from each BLE device over a period of approximately
eight hours (five hours during daytime and three hours at night-
time). Additionally, for each attacker platform situated in various
positions, malicious packets were collected for about 20 minutes.
Our BLE Spoofing Attack Dataset (BLE-SAD) contains 1,304,000
advertising packets, of which 82.4% are benign and 16.6% are mali-
cious. The open-source data can be accessed at the appendix.

4 DETECTION MECHANISM
In this section, we will discuss our proposed BLEGuard system,
a hybrid detection mechanism combined cyber-physical analysis
with deep learning techniques.

4.1 Pre-detection Scheme
In BLEGuard, suspicious activities are identified through detection
of atypical fluctuations in cyber-physical features such as Used
Channel Numbers (UCN), Advertising Interval (INT), Carrier Fre-
quency Offset (CFO), and Received Signal Strength Indicator (RSSI).
Abrupt changes in UCN and INT indicate potential security threats,
while RSSI and CFO are crucial for a continuous pre-detection
mechanism that anticipates advanced spoofing attacks.

To effectively monitor these indicators, BLEGuard employs three
network sniffers that capture the values of these features within
a lookback window. The lookback window refers to a predefined
period prior to the current analysis point, during which data is
collected to establish a baseline for normal behavior. This historical
data is essential for understanding typical network conditions and
variations. Subsequently, the system evaluates the current network
activity by examining the values from an observation window, which
is the period immediately following the lookback window. This
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approach allows BLEGuard to compare present data against the
baseline to spot any irregularities or deviations.

An alarm is triggered if there are deviations from the established
norms in any of the monitored features, indicating a potential
security breach. This method can be seamlessly integrated into
existing BLE networks without causing disruption or significant
resource consumption. Detailed detection schemes for each feature
are outlined as follows:

• Metric 1: Used Channel Numbers
In BLE networks, Used Channel Numbers (UCN) designates the
sequence of radio channels that BLE devices utilize for transmission,
adhering to a preconfigured pattern to enhance connectivity and
reduce noise interference. The stability of UCN patterns can be
compromised during spoofing attacks, as attackers may instigate
an irregular shift in the communication channels, thus disrupting
the network’s harmonious channel utilization. To quantify such
fluctuations, we introduce the metric𝑈𝐶𝑁change, which represents
the cumulative measure of channel switching activity:

𝑈𝐶𝑁change =
𝑁obs∑︁
𝑖=1

|𝑈𝐶𝑁𝑖 −𝑈𝐶𝑁𝑖−1 | , (1)

where𝑁obs is the count of observed transmission packets and𝑈𝐶𝑁𝑖

corresponds to the utilized channel for the 𝑖𝑡ℎ packet transmission.
An elevated𝑈𝐶𝑁change value is indicative of more frequent channel
alternations, potentially signaling an ongoing spoofing attack. For
operational integrity in BLE networks, an acceptable threshold for
𝑈𝐶𝑁change, denoted by Δ𝑈𝐶𝑁normal, is set at 2.8. This threshold
indicates the maximum allowable frequency of channel changes
within a defined observation period. A breach of this threshold is
symptomatic of anomalous behavior:

If𝑈𝐶𝑁change > Δ𝑈𝐶𝑁normal, activate further detection. (2)

Employing 𝑈𝐶𝑁change as a heuristic enables a robust security
framework capable of detecting and responding to potential spoof-
ing threats, thereby fortifying the BLE network’s defenses.

•Metric 2: Advertising Interval TheAdvertising Interval (INT) is
also a key parameter in BLE communications, defining the time gap
between consecutive advertising packets. This interval is crucial for
maintaining the orderly transmission of broadcast information in
BLE networks. By definition, the INT between any two consecutive
advertising packets should never fall below a predefined lower
bound, which is set based on the specifications of the BLE device
and the operational requirements of the network. This lower bound
is denoted as 𝐿int. The formula used to compute the runtime INT
value, 𝐼𝑁𝑇 , for the interval between two packets is given by:

𝐼𝑁𝑇 = 𝑇current −𝑇previous, (3)
where 𝑇current is the timestamp of the current advertising packet,
and 𝑇previous is the timestamp of the immediately preceding ad-
vertising packet. The Advertising Interval (INT) is calculated as
the difference between these two timestamps. If 𝐼𝑁𝑇 is found to
be less than the predefined lower limit 𝐿int, the monitor identifies
this condition as anomalous. Such a scenario indicates a potential
operational fault or a security breach, such as a spoofing attack that
attempts to flood the network with frequent, unauthorized advertis-
ing packets. Upon detecting such an anomaly, the monitor triggers

an alarm, alerting the system to the potential threat. Typically, 𝐿int
is set to a threshold value of 10 milliseconds to detect rapid, un-
scheduled transmissions [17]. The corresponding condition can be
mathematically expressed as:

If 𝐼𝑁𝑇 < 𝐿int, activate further detection. (4)
This monitoring mechanism ensures the integrity and correct

functioning of the BLE network by verifying that the advertising
packets are transmitted within the expected intervals, adhering to
the designed operational parameters.

• Metric 3: CFO level
BLEGuard continuously monitors the CFO (Carrier Frequency Off-
set) and RSSI (Received Signal Strength Indicator) values from ad-
vertising packets. Upon activation of the CFO and RSSI inspection,
BLEGuard analyzes these values through the following procedure.
For a BLE device exhibiting intermittent advertising patterns, we
define the lookback window as the time period 𝑇𝑙 (with 𝑁𝑙 pack-
ets) before the transition from advertising to connection state, and
the observation window as the time period 𝑇𝑜 (with 𝑁𝑜 packets)
after the transition from connection back to advertising state. In
BLEGuard, following the reception of a connection request packet,
the monitoring system initiates the CFO and RSSI inspections for
advertising packets collected from each device across the three
advertising channels (37, 38 and 39). The system first calculates
the acceptable ranges for CFO and RSSI values using data from the
lookback window. It then evaluates these metrics in the advertising
packets during the observation window. If an anomaly is detected
in either the CFO or RSSI readings, an alarm is triggered.

The CFO values observed from BLE networks are expected to
conform to a Gaussian distribution [17]. Consequently, when 𝜇0
and 𝜎0 represent the mean and standard deviation of these CFO
values, the probability distribution function for the CFO can be
articulated as:

𝐹𝑐 𝑓 𝑜 (𝑥𝑖 ) =
1

𝜎0
√
2𝜋

· 𝑒
− (𝑥𝑖 −𝜇0 )2

2𝜎2
0 (5)

where 𝑥𝑖 denotes a sample CFO value. In BLEGuard, the monitor
employs the CFO values from advertising packets within a look-
back window, comprising 𝑁𝑙 packets, to calculate 𝜇0 and 𝜎0. These
parameters are then integrated into the probability function previ-
ously mentioned. If the advertising packets from both the lookback
and subsequent observation windows originate from the same BLE
device, the CFO values from the observation window’s advertising
packets should statistically align with the given distribution. This
is verified by the monitoring system calculating the negative log-
likelihood of the CFO values from the observation window packets,
defined as:

𝐿𝑐 𝑓 𝑜 =
1
𝑁𝑜

𝑁𝑜∑︁
𝑖=1

− log 𝐹𝑐 𝑓 𝑜 (𝑥𝑖 ) (6)

If the log-likelihood value is less than a predetermined CFO in-
spection threshold, denoted by 𝛽𝑐 𝑓 𝑜 (i.e., 𝐿𝑐 𝑓 𝑜 < 𝛽𝑐 𝑓 𝑜 ), the CFO
values are considered to be within the normal range for the BLE
device. This threshold 𝛽𝑐 𝑓 𝑜 is a tunable parameter within BLEGuard
that dictates the permissible range of CFO values during the ob-
servation window. In contrast, if the log-likelihood value exceeds
𝛽𝑐 𝑓 𝑜 (i.e., 𝐿𝑐 𝑓 𝑜 > 𝛽𝑐 𝑓 𝑜 ), an anomaly is recognized, and an alarm is
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activated, signaling a possible spoofing attack. In our real-world
tests, the optimal setting for parameter 𝛽𝑐 𝑓 𝑜 is 3.0 [17].

• Metric 4: RSSI level
To detect anomalies in RSSI values amid strong signal reflections
in BLE networks, we utilize a two-component Gaussian mixture
model. This approach is chosen because RSSI values in environ-
ments with high noise can be effectively modeled using two normal
distributions [15]. The probability distribution function for RSSI
values is given by:

𝐹𝑟𝑠𝑠𝑖 (𝑦𝑖 ) = 𝑤 · 1
𝜎1
√
2𝜋

·𝑒
− (𝑦𝑖 −𝜇1 )2

2𝜎2
1 +(1−𝑤) · 1

𝜎2
√
2𝜋

·𝑒
− (𝑦𝑖 −𝜇2 )2

2𝜎2
2 (7)

In this equation, 𝜇1 and 𝜇2 are the means of the two components,
𝜎1 and 𝜎2 are their standard deviations, 𝑤 is a weight parameter
that balances the two components (usually set to 0.56), and 𝑦𝑖 is a
RSSI sample data. Using the BLEGuard system, 𝑁𝑙 of RSSI values
from advertising packets within a lookback window are analyzed
to estimate the parameters 𝜇1, 𝜇2, 𝜎1, 𝜎2, and𝑤 through a conven-
tional expectation-maximization (EM) algorithm [8]. Following this,
the monitor calculates the negative log-likelihood that the RSSI
values (𝑦𝑖 ,∀𝑖 ∈ [1, 𝑁𝑜 ]) from the observation window conform to
the model specified by Equation (7) to:

𝐿𝑟𝑠𝑠𝑖 =
1
𝑁𝑜

𝑁𝑜∑︁
𝑖=1

− log 𝐹𝑟𝑠𝑠𝑖 (𝑦𝑖 ) (8)

An anomaly is detected when the negative log-likelihood sur-
passes a predefined RSSI inspection threshold, denoted as 𝛿rssi (i.e.,
𝐿rssi > 𝛿rssi). The threshold 𝛿rssi is a crucial parameter in BLEGuard,
calibrated to optimize detection sensitivity and specificity. Typi-
cally, 𝛿rssi is set to 5.0. The details of model parameter setting will
be discussed in Section 5.2.

Figure 4: The operational mechanism of temporal convolu-
tional network.

4.2 Reconstruction Model
Upon identifying suspicious activities, a thorough analysis is ini-
tiated on anomalous data batches. To facilitate this, a Temporal
Convolutional Network (TCN) [11], as illustrated in Figure 4, is
employed to reconstruct traffic patterns. This approach helps iso-
late aberrant data through comparative analysis. A TCN is a type
of neural network specifically designed for sequence modeling that
combines convolutional layers with causal connections to ensure

that predictions for a specific time step can only depend on past
data. This structure makes TCNs particularly effective for time
series predictions where past context is crucial.

During the offline training phase, the objective is to minimize the
discrepancy between the learned data 𝐷𝐿 and the original dataset
𝐷𝑇 . In the online testing phase, the presence of malicious packets
in the input data triggers an increase in the reconstruction error,
indicative of potential spoofing threats. The residual, defined as
𝑅(𝐷𝑇 , 𝐷𝐿) = |𝐷𝑇 − 𝐷𝐿 | with 𝐷𝐿 = 𝑓 (𝐷𝑇 ), where 𝑓 represents
the transformation function employed by the TCN auto-encoder,
serves as a critical metric. This residual is assessed to calculate the
anomaly score 𝛼 [10] for each data batch, as depicted in Equation
(9). Here, 𝑅𝛼 denotes the calculated residual, 𝜇 is the mean value of
the residual, and 𝜎 is its standard deviation.

𝛼 =

{
0, 𝑤ℎ𝑒𝑛 |𝑅𝛼 − 𝜇𝑅𝛼 | ≤ 3 ∗ 𝜎𝑅𝛼 → 𝑁𝑜𝑟𝑚𝑎𝑙

1, 𝑤ℎ𝑒𝑛 |𝑅𝛼 − 𝜇𝑅𝛼 | > 3 ∗ 𝜎𝑅𝛼 → 𝑆𝑢𝑠𝑝𝑖𝑐𝑖𝑜𝑢𝑠
(9)

4.3 Classification Models
Following the identification of suspicious data batches, the next
step involves classifying these packets into two categories: benign
or malicious. In this research, a text-convolutional neural network
(text-CNN) [13] is employed for the extraction of traffic features.
Text-CNNs are specialized types of convolutional neural networks
designed to handle text data. They apply convolutional layers to
extract higher-level features from text data structured as input
vectors, making them highly effective for tasks involving natural
language processing and text analysis.

For packet classification, this work employs four cost-efficient
classifiers: Support Vector Machine (SVM) [9], K-Nearest Neigh-
bors (KNN) [10], Random Forest (RF) [13], and NaÃŕve Bayes [12].
This multi-classifier approach helps to mitigate potential biases in
text analysis by diversifying the analytical perspectives. Network
payload-based features are generated by converting the payload
bytes into low-dimensional vectors using Word2Vec techniques,
which effectively capture the semantic relationships within the
data. These vectors form the input for the text-CNN, where key
traffic features are extracted. The features extracted by the text-
CNN are then concatenated with statistical features to create a
comprehensive feature set for the final classification models.

4.4 System Overview
BLEGuard is designed to optimize the balance between detection
accuracy and power consumption. As depicted in Figure 5, the
system employs a flexible approach where the pre-detection algo-
rithm is utilized to maintain efficiency under computing resource
constraints, minimizing power and computational overhead. In sce-
narios where high detection accuracy is paramount, the reconstruc-
tion model is activated to enhance analytical precision. Moreover,
the classification models within BLEGuard are adept at precisely
identifying malicious advertising packets, providing targeted feed-
back that significantly augments the efficacy of the detection mod-
ules. This versatile framework ensures that BLEGuard can adapt to
varying operational demands, thereby maintaining robust security
measures without compromising on network performance.
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Figure 5: Overall workflow of detection mechanism.

5 EXPERIMENTAL RESULTS
This section describes the experimental framework used to evalu-
ate the efficacy of the BLEGuard system. The settings are carefully
designed to mimic realistic scenarios in which BLE networks op-
erate, ensuring that the results are both robust and applicable to
real-world applications.

5.1 Experimental Details
The BLE-SAD dataset was compiled from nine distinct BLE devices,
with their information detailed in the appendix. The dataset was
divided into training and testing sets at a ratio of 8.5 to 1.5, compris-
ing 962,850 effective BLE network packets for training and 169,920
for testing, respectively. The model training was conducted using
an Intel Core i5-13600 CPU processor (3.50 GHz) with 32GB of RAM
and an NVIDIA GeForce RTX 4060 Ti GPU equipped with 24GB of
memory. The algorithms were implemented in Python 3.8, utilizing
the PyTorch 1.8.1 framework.

5.2 Parameter Settings
In BLEGuard’s Pre-detection Scheme, four crucial parameters (𝐿int,
Δ𝑈𝐶𝑁normal, 𝛽𝑐 𝑓 𝑜 , and 𝛿rssi) are carefully configured within spe-
cific ranges to maximize detection accuracy, as summarized in
Table 2. These settings are the result of comprehensive testing
and fine-tuning, ensuring that BLEGuard efficiently and reliably
identifies spoofing attacks within BLE networks. Addtionally, the
hyperparameter of learning models are given in the appendix.

5.3 Overall Performance Evaluation
During the evaluation phase, three key metrics are employed to
assess the effectiveness of our proposed methods. Accuracy, defined
as the overall proportion of correctly classified instances, serves
as a fundamental measure of the model’s capability to accurately
differentiate between benign and malicious packets. This metric is
critical in evaluating the overall efficacy of the detection system. The
False Alarm Rate (FAR) quantifies how often BLEGuard erroneously
activates an alert when processing benign advertising packets from
legitimate BLE devices, reflecting the model’s precision. Conversely,

the Un-detection Rate (UND) measures the frequency with which
BLEGuard fails to identify a spoofing attack, highlighting potential
vulnerabilities in detecting sophisticated threats.

BLEGuard’s performance evaluation is conducted on a robust
and imbalanced dataset collected from nine different BLE devices,
such as Xiaomi sensors, Apple HomePod, and Dell speakers. The de-
vices and the corresponding evaluation results are comprehensively
detailed in Table 3. The table presents the performance metrics for
each device, including the accuracy, FAR, and UND, thus providing
a granular view of the system’s effectiveness across varied hard-
ware configurations. The experimental data reveals BLEGuard’s
impressive detection capabilities, achieving an exemplary average
accuracy of 99.02%, complemented by a low false alarm rate of 2.04%
and an un-detection rate of 0.37%. These statistics not only validate
the robustness of BLEGuard but also illustrate its adaptability and
reliability in diverse operational environments.

As shown in Table 4, compared with MARC framework [21] and
BlueShield system [17], BLEGuard offers higher accuracy in iden-
tifying spoofing attack while maintaining faster response times.
By integrating cyber-physical analysis with deep learning tech-
niques, BLEGuard achieves approximately a 15% improvement in
false alarm rate and nearly a 50% improvement in un-detection rate,
thereby enhancing overall accuracy. In addition, we aim to achieve
improved detection performance and better response time through
adjustments to model hyperparameters.

6 CONCLUSION AND ONGOINGWORK
In this paper, we proposed the BLEGuard system, a novel hybrid
detection mechanism designed to safeguard Bluetooth Low Energy
(BLE) networks against sophisticated spoofing attacks. BLEGuard’s
unique integration of a pre-detection scheme, reconstruction tech-
niques, and classification models enables it to effectively identify
and neutralize threats, thereby enhancing network security. The
system’s high detection accuracy, combined with a low false alarm
rate and un-detection rate, underscores its potential not only as a
specialized tool for BLE security but also for broader applications
in industry, healthcare, and smart home sectors. The practical ap-
plication of BLEGuard in these sectors can significantly mitigate
risks associated with the inherent security vulnerabilities of BLE
technologies, providing a reliable security solution that aligns with
the needs of modern connected environments.

The project will incorporate additional datasets encompassing
real-world low-power Bluetooth usage scenarios, thereby expand-
ing the scale of the BLE-SAD dataset. Furthermore, we will explore
the application of more advanced models for data extraction and
threat assessment, aiming to enhance assessment speed and reduce
system power consumption. These advancements will not only
strengthen the security of BLE networks but also pave the way for
next-generation protection methodology in the evolving landscape
of digital communication technologies.
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Table 2: Optimal Parameter Settings for the Pre-detection Scheme.

Network Features Parameter Testing Range Optimal Setting
Used Channel Numbers (UCN) Δ𝑈𝐶𝑁normal (2.0, 5.0) 2.8
Advertising Interval (INT) 𝐿int (5.0, 20.0) ms 10.0 ms
Carrier Frequency Offset (CFO) 𝛽𝑐 𝑓 𝑜 (1.0, 5.0) 3.0
Received Signal Strength Indicator (RSSI) 𝛿rssi (3.0, 10.0) 5.0

Table 3: Detection performance of BLEGuard mechanism.

ID Device (Number) Accuracy FAR UND Response Time (s)

1 Xiaomi Sensor (*3) 98.92% 2.23% 0.43% 1.19
2 Xiaomi Locker (*2) 99.11% 2.04% 0.32% 1.37
3 Xiaomi Speaker (*2) 98.93% 1.84% 0.36% 2.49
4 Apple HomePod (*1) 99.04% 2.11% 0.34% 2.54
5 Dell Speaker (*1) 99.21% 2.51% 0.17% 1.91
6 Lenovo Speaker (*1) 98.71% 1.81% 0.76% 2.89
7 August Smart Lock (*2) 99.00% 2.43% 0.19% 2.63
8 Nutale Key Finder (*2) 99.05% 1.45% 0.52% 2.11
9 Nordic nRF52 DK (*2) 99.20% 1.96% 0.22% 1.59

Overall 99.02% 2.04% 0.37% 2.08

Table 4: Performance comparison.

Method FAR UND Accuracy Response
Time

MARC [21] 7.28% 5.71% 92.64% 8.79s
BlueShield [17] 2.37% 0.73% 98.67% 3.46s
BLEGuard (us) 2.04% 0.37% 99.02% 2.08s

REFERENCES
[1] Bluetooth-SIG. Accessed on: 20 April 2024. Bluetooth Core Specification 5.4.

https://www.bluetooth.com/specifications/.
[2] Bluetooth-SIG. Accessed on: 20 April 2024. Bluetooth Market Update.

https://bluetooth.com/2024-market-update/.
[3] Bluetooth-SIG. Accessed on: 20 April 2024. Security in Bluetooth Specifications.

https://www.bluetooth.com/learn-about-bluetooth/key-attributes/bluetooth-
security/.

[4] Hanlin Cai. 2024. Securing Billion Bluetooth Devices Leveraging Learning-Based
Techniques. In Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 38.
23731–23732.

[5] Matthias Cäsar, Tobias Pawelke, Jan Steffan, and Gabriel Terhorst. 2022. A survey
on Bluetooth Low Energy security and privacy. Computer Networks 205 (2022),
108712.

[6] Shane Ditton, Ali Tekeoglu, Korkut Bekiroglu, and Seshadhri Srinivasan. 2020.
A proof of concept denial of service attack against bluetooth iot devices. In
2020 IEEE International Conference on Pervasive Computing and Communications
Workshops (PerCom Workshops). IEEE, 1–6.

[7] Carles Gomez, Joaquim Oller, and Josep Paradells. 2012. Overview and evaluation
of bluetooth low energy: An emerging low-power wireless technology. sensors
12, 9 (2012), 11734–11753.

[8] Xiansheng Guo, Lin Li, Feng Xu, and Nirwan Ansari. 2018. Expectation maxi-
mization indoor localization utilizing supporting set for Internet of Things. IEEE
Internet of Things Journal 6, 2 (2018), 2573–2582.

[9] Christiana Ioannou and Vasos Vassiliou. 2021. Network attack classification in
IoT using support vector machines. Journal of sensor and actuator networks 10, 3
(2021), 58.

[10] Abdelkader Lahmadi, Alexis Duque, Nathan Heraief, and Julien Francq. 2020.
MitM attack detection in BLE networks using reconstruction and classification
machine learning techniques. In Joint European Conference on Machine Learning
and Knowledge Discovery in Databases. Springer, 149–164.

[11] Colin Lea, Michael D Flynn, Rene Vidal, Austin Reiter, and Gregory D Hager.
2017. Temporal convolutional networks for action segmentation and detection.
In proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.

[12] Amjad Mehmood, Mithun Mukherjee, Syed Hassan Ahmed, Houbing Song, and
Khalid Mahmood Malik. 2018. NBC-MAIDS: Naive Bayesian classification tech-
nique in multi-agent system-enriched IDS for securing IoT against DDoS attacks.
The Journal of Supercomputing 74 (2018), 5156–5170.

[13] Erxue Min, Jun Long, Qiang Liu, Jianjing Cui, and Wei Chen. 2018. TR-IDS:
Anomaly-based intrusion detection through text-convolutional neural network
and random forest. Security and Communication Networks (2018).

[14] Sushant Kumar Pattnaik, Soumya Ranjan Samal, Shuvabrata Bandopadhaya,
Kaliprasanna Swain, Subhashree Choudhury, Jitendra Kumar Das, Albena Mi-
hovska, and Vladimir Poulkov. 2022. Future wireless communication technology
towards 6G IoT: An application-based analysis of IoT in real-time location moni-
toring of employees inside underground mines by using BLE. Sensors 22, 9 (2022),
3438.

[15] Yong Sheng, Keren Tan, Guanling Chen, David Kotz, and Andrew Campbell.
2008. Detecting 802.11 MAC layer spoofing using received signal strength. In
IEEE INFOCOM 2008-The 27th Conference on Computer Communications. IEEE,
1768–1776.

[16] Ioannis Stellios, Panayiotis Kotzanikolaou, and Mihalis Psarakis. 2019. Advanced
persistent threats and zero-day exploits in industrial Internet of Things. Security
and Privacy Trends in the Industrial Internet of Things (2019), 47–68.

[17] Jianliang Wu, Yuhong Nan, Vireshwar Kumar, Mathias Payer, and Dongyan Xu.
2020. {BlueShield}: Detecting spoofing attacks in bluetooth low energy networks.
In 23rd International Symposium on Research in Attacks, Intrusions and Defenses
(RAID 2020).

[18] Jianliang Wu, Yuhong Nan, Vireshwar Kumar, Dave Jing Tian, Antonio Bianchi,
Mathias Payer, and Dongyan Xu. 2020. {BLESA}: Spoofing attacks against
reconnections in bluetooth low energy. In 14th USENIX Workshop on Offensive
Technologies (WOOT 20).

[19] Jianliang Wu, Ruoyu Wu, Dongyan Xu, Dave Tian, and Antonio Bianchi. 2023.
SoK: The Long Journey of Exploiting and Defending the Legacy of King Harald
Bluetooth. In 2024 IEEE Symposium on Security and Privacy (S&P).

[20] Han Xu, Yaxin Li, Wei Jin, and Jiliang Tang. 2020. Adversarial attacks and
defenses: Frontiers, advances and practice. In Proceedings of the 26th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining. 3541–3542.

[21] Muhammad Yaseen,Waseem Iqbal, Imran Rashid, Haider Abbas, Mujahid Mohsin,
Kashif Saleem, and Yawar Abbas Bangash. 2019. Marc: A novel framework for
detecting mitm attacks in ehealthcare ble systems. Journal of medical systems 43
(2019), 1–18.

[22] Pengfei Zhang, Sai Ganesh Nagarajan, and Ido Nevat. 2017. Secure location of
things (SLOT): Mitigating localization spoofing attacks in the Internet of Things.
IEEE Internet of Things Journal 4, 6 (2017), 2199–2206.

[23] Zaixi Zhang, Xiaoyu Cao, Jinyuan Jia, and Neil Zhenqiang Gong. 2022. Fldetector:
Defending federated learning against model poisoning attacks via detecting
malicious clients. In Proceedings of the 28th ACMSIGKDDConference on Knowledge
Discovery and Data Mining. 2545–2555.



KDD-UC’24, Aug 25-29, 2024, Barcelona, Spain Hanlin Cai1,3* , Yuchen Fang1* , Jiacheng Huang1 , Honglin Liao1 , Meng Yuan2 , Zhezhuang Xu3†

A REPRODUCIBILITY
Here we describe the setup and implementation details of our ex-
periments presented in Section 5. Implementations of BLEGuard
algorithm, along with BLE-SAD dataset for reproducing experi-
ments, can be found at https://github.com/BLEGuard/supplement

A.1 Testbed Details
The BLE-SAD is established in the following components,

• BLE Devices: A variety of commercial BLE devices, such as
sensors, locks, and beacons, which represent a cross-section of
typical endpoints found in BLE networks. These devices are
instrumental in generating the benign traffic patterns for our
datasets.

• User Devices: Smartphones, tablets, and computers used by end-
users to interact with BLE devices. These devices are equipped
with BLE capabilities to emulate regular user operations and
activities within the network (Table 5).

• Attacker Platforms: These include custom-built software and
modified hardware designed to simulate various security attacks
on the BLE network, such as spoofing and denial of service (DoS)
attacks. Tools in this category help test the robustness of the
network’s security measures (Table 6).

• Network Sniffers: Devices and software used to capture and
analyze the traffic flowing through the BLE network. Examples
include Wireshark for packet analysis and Ubertooth for specific
BLE monitoring (Table 7).

• Data Acquisition Systems: These systems are configured to au-
tomatically record all network traffic, capturing essential metrics
such as packet size, timing, and payload data. They are critical
for gathering the raw data needed for further analysis.

• Simulation Software: Software tools that simulate network
conditions and behaviors, which help in predicting network per-
formance under various scenarios and in understanding potential
network failures before they occur.

Table 5: User devices used in BLE testbed.

Device Name Operation System

Google Pixel 7 Andriod 13
iPhone 13 iOS 16

Surface Laptop 5 Windows 11
MacBook Pro M1 MacOS 13.1
Lenovo V15-IIL Windows 10 Pro
Dell 7050 PC Windows 10 Pro

Table 6: Attacker platform used in BLE testbed.

Device Name Operating Platform

Lenovo 15IIL Laptop Mirage Software
CSR 4.0 BT dongle Mirage Software

HM-10 development board Ostinato Software
CYW920735 development board Ostinato Software

Table 7: Network sniffer used in BLE testbed.

Communication Platform Network Capture Tool

Raspberry Pi (Linux 5.4) BLE-Analyzer-PRO
Raspberry Pi (Linux 5.4) Ubertooth One
Google Pixel 7 (Anroid 13) nRF Connect Software

Apple MacBook (MacOS 13.1) nRF Connect Software

A.2 Baseline Machine Learning Models
SVM. The Support Vector Machine (SVM) is a widely used super-
vised learning model for classification and regression tasks. The
primary objective of SVM is to find an optimal hyperplane that
separates the data, clearly distinguishing between attack packets
and normal packets.
KNN. K-Nearest Neighbors (KNN), a non-parametric regression
method, was implemented with a leaf size of 50 to balance computa-
tional efficiency and prediction accuracy. This parameter optimizes
the trade-off between resource use and predictive performance.
Random Forest. The Random Forest ensemble learning method
was employed with a maximum tree depth of 50 and 250 estima-
tors. This configuration was selected to achieve an optimal balance
between model complexity and computational feasibility.
NaÃŕve Bayes. The NaÃŕve Bayes classifier was utilized for its
efficiency and robust performance in high-dimensional datasets,
assuming conditional independence between features.

A.3 Hyperparameters of Deep Learning Models
The hyperparameters of temporal convolutional network (TCN)
and text-convolutional neural network (Text-CNN) are as follows:

Table 8: Hyperparameters of TCN model.

Hyperparameters Value

Optimizer RMSprop
Batch size 50

Epoch number 50
Loss function Binary cross-entropy

Validation metric Accuracy
Validation split 0.2
Deep learning
framework

PyTorch 1.8.1
Gensim (WordVec) 3.7.1

Table 9: Hyperparameters of Text-CNN model.

Hyperparameters Value

Optimizer RMSprop
Learning rate 5e-4
Kernel size 8

Number of filters 9
Loss function MSE
Hidden units 10
Dropout rate 0.05

Gradient clipping 1

https://github.com/BLEGuard/supplement
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